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Abstract
Two different theoretical formulations of the finite temperature effects have
been recently proposed for integrable field theories. In order to decide which
of them is the correct one, we perform for a particular model an explicit
check of their predictions for the one-point function of the trace of the stress–
energy tensor, a quantity which can be independently determined by the
thermodynamical Bethe ansatz.

PACS numbers: 11.10.Wx, 11.10.St

1. Introduction

Finite temperature correlation functions are important quantities for many applications of both
theoretical and experimental interest (see, for instance [1]). A special class of quantum field
theories is provided by the two-dimensional integrable models, which can be exactly solved
by means of bootstrap methods [2–5]. For these models, two different formulations of finite
temperature effects have been recently discussed in the literature: the first is due to LeClair and
Mussardo [6] and the second has been proposed by Delfino [7]. Although the two formalisms
coincide if applied to the trivial cases of free quantum field theories, however, they drastically
differ once used to deal with interacting theories. To determine which of the two is the correct
one we compare their predictions versus a quantity which can be independently determined.
This is the case of the finite temperature one-point function of the trace of the stress–energy
tensor which can be computed by the thermodynamical Bethe ansatz (TBA) [5]. As we will
show below, the proposal by LeClair and Mussardo exactly matches the low-temperature
expansion of this quantity whereas the proposal by Delfino fails at orderO(e−3mr). Before
presenting the explicit calculations, let us briefly discuss the main features of the two different
finite temperature formalisms.
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2. LeClair–Mussardo formalism

This formalism, discussed in [6], combines together physical principles coming from two
different areas: the thermodynamical Bethe ansatz and the form factor approach. It originates
from an interpretation of the expression of the free energy—as determined by the TBA—in
terms of quasi-particle excitations with respect to a thermal ground state. In order to clarify
this statement, it is useful to summarize the TBA approach. We assume for simplicity that
the spectrum of the integrable theory consists of a single particleA with massm and an exact
S-matrix S(θ). In the following we consider the caseS(0) = −1, which gives rise to the
fermionic TBA equations. We define

σ(θ) = −i log S(θ) φ(θ) = −i
d

dθ
logS(θ). (2.1)

The partition function at a finite temperatureT and on a volumeL (for L → ∞) is determined
by means of the thermodynamical Bethe ansatz equations as follows [5]. In a box of large
volumeL, 0 < x < L, with periodic boundary conditions, the quantization condition of the
momenta is given by eik(θi)L

∏
j� =i S(θi − θj ) = 1, i.e.

mL shθi +
∑
j� =i

σ (θi − θj ) = 2πni (2.2)

whereni are integers. Introducing a density of occupied states per unit volumeρ1(θ) as well
as a density of levelsρ(θ), in the thermodynamic limit equation (2.2) becomes

2πρ = e + 2πφ ∗ ρ1 (2.3)

wheree = m coshθ and(f ∗g)(θ) = ∫∞
−∞ dθ ′f (θ−θ ′)g(θ ′)/2π . Defining the pseudo-energy

ε(θ) as
ρ1

ρ
= 1

1 + eε
(2.4)

the minimization of the free energy with respect to the densities of states leads to the integral
equation

ε = eR − φ ∗ log(1 + e−ε) (2.5)

and the partition function is then given by

Z(L,R) = exp

[
mL

∫
dθ

2π
ch θ log

(
1 + e−ε(θ)

)]
. (2.6)

As shown in [6], the interesting point is now that the above partition function can be interpreted
as the one of a gas of fermionic particles but with energy given byε(θ)/R. Namely, there
is a one-to-one correspondance between the above expression (2.6) and the partition function
computed according to the following thermal sum

Z(L,R) =
∞∑
n=0

1

n!

∫
dθ1

2π
· · · dθn

2π
〈θn · · · θ1|θ1 · · · θn〉

n∏
i=1

e−ε(θi) (2.7)

where the scalar products of the states are computed by applying the standard free fermionic
rules. The above equality implies that all physical properties of the system can be extracted
by employing the quasi-particle excitations above the TBA thermal ground state. Since this
differs from the usual (zero temperature) ground state, it is not surprising that its excitations
do not satisfy the standard dispersion relationse = m coshβ, p = m sinhβ, rather they have
dressed energy ˜e = ε(θ)/R and dressed momentum̃k(θ):

ẽ(θ) = ε(θ)/R k̃(θ) = k(θ) + 2π(σ ∗ ρ1)(θ). (2.8)
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In this context, the rapidityθ plays the role of a variable which simply parametrizes the
dispersion relation of the quasi-particle excitations and theirS-matrix, which is assumed to
coincide with the originalS(θi − θj ).

The TBA allows us to compute the finite temperature one-point function of the trace of
the stress–energy tensorT

µ
µ [5]. In fact, we have〈

T µ
µ

〉
R

− (
T µ
µ

)
0

= 2π

R

d

dR
[RE(R)], (2.9)

whereE(R) = − logZ/L. This can be also expressed as〈
T µ
µ

〉
R

− (
T µ
µ

)
0

= m

∫
dθ

e−ε

1 + e−ε

(
∂Rε chθ − 1

R
∂θε shθ

)
(2.10)

where the functions∂Rε and∂θ ε satisfy linear integral equations which can be easily solved.
The final result reads〈
T µ
µ

〉
R

− (
T µ
µ

)
0

= 2πm2

( ∞∑
n=1

∫ [
n∏

i=1

dθi
2π

f (θi)e−ε(θi)

]
φ(θ12) · · ·φ(θn−1,n) ch(θ1n)

)

(2.11)

where

f (θ) = 1

1 + e−ε(θ)
. (2.12)

Let us now consider the calculation of the finite temperature one-point functions (the only
ones which we consider in this paper). According to LeClair and Mussardo, this correlator is
given by

〈O(x, t)〉R =
∞∑
n=0

1

n!

1

(2π)n

∫ [
n∏

i=1

dθif (θi)e
−ε(θi)

]
〈θn · · · θ1|O(0)|θ1 · · · θn〉conn (2.13)

where the connected form factor of the operatorO is defined as

〈θn · · · θ1|O|θ ′
1 · · · θ ′

m〉conn ≡ FP

(
lim
ηi→0

〈0|O|θn + iπ + iηn, . . . , θ1 + iπ + iη1, θ1, . . . , θn〉
)
.

(2.14)

FP in front of the above expression means taking itsfinite part, i.e. terms proportional to
(1/ηi)p, wherep is some positive power, and also terms proportional toηi/ηj , i �= j are
discarded in taking the limit. With this prescription the resulting expression is a universal
quantity, i.e. independent of the way in which the above limits are taken.

It is easy to see that within this formalism, the finite temperature one-point function of the
trace of the stress–energy tensor exactly coincides with its expression provided by the TBA,
equation (2.11). In fact, the connected matrix elements of this operators are given by〈

θ
∣∣T µ

µ

∣∣ θ 〉
conn

= 2πm2

(2.15)〈
θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2
〉
conn

= 4πm2φ(θ1 − θ2) ch(θ1 − θ2)

and by an inductive application of the form factor residue equations〈
θn · · · θ1

∣∣T µ
µ

∣∣ θ1 · · · θn
〉
conn

= 2πm2 φ(θ12)φ(θ23) · · ·φ(θn−1,n) ch(θ1n) + permutations

(2.16)

whereθij = θi − θj . Once inserted into equation (2.13), the above series coincides with that
of equation (2.11).

In conclusion, the formalism by LeClair and Mussardo predicts, at least for the particular
thermal one-point function ofT µ

µ , an exact matching with the expression determined by the
TBA.
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3. Delfino’s formalism

This formalism, discussed in [7], only employs the form factor approach. The finite
temperature effects are taken into account by defining the theory on a cylinder infinitely
extended in the space direction and a widthR = 1/T in the other direction. The particles
entering the thermal sum are the asymptotic states satisfying the standard dispersion relations
e = m coshβ, p = m sinhβ and the contribution of then-particle asymptotic state to
Tr[Oe−HR ] is given by

dO
n (R) = 1

n!

1

(2π)n

∫
dθ1 . . .dθnFO

n,n(θn, . . . , θ1|θ1, · · · , θn)e−EnR (3.1)

with En = m
∑n

i=1 coshθi and

FO
m,n(θ

′
m, . . . , θ

′
1|θ1, . . . , θn) = 〈θ ′

m, . . . , θ
′
1|O|θ1, . . . , θn〉.

Define

dO(R) =
∞∑
n=0

dO
n (R) (3.2)

and normalize the thermal sum with respect to the identity operatorI

〈O〉R = dO(R)

dI (R)
. (3.3)

In his paper [7], Delfino considered for the finite part of the form factors entering equation
(3.1) thesymmetric limit

FO
2n(θ1, . . . , θn) = lim

η→0
FO

0,2n(θn + iπ + iη, . . . , θ1 + iπ + iη, θ1, . . . , θn) (3.4)

and he also showed that the singular disconned parts of the form factors of the local
operatorO only enter through the constant factorS(0). All other singular terms cancel
in the ratio (3.3). Finally, he proposed for the finite temperature one-point function the
expression

〈O〉R =
∞∑
n=0

1

n!

1

(2π)n

∫ [
n∏

i=1

dθig(θi, R)e−mR coshθi

]
FO

2n(θ1, . . . , θn) (3.5)

where

g(θ,R) = 1

1 − S(0)e−mR coshθ . (3.6)

The above formula has to be contrasted with the one given by equation (2.13).

4. Main differences and open problems

There are two main differences between the two formalisms:

• LeClair–Mussardo formalism employs the quasi-particle excitations with respect to the
thermal vacuum and therefore the pseudo-energyε(θ), solution of the integral equation
(2.5), whereas Delfino’s formalism employs the standard asymptotic particles at zero
temperature with energye = m coshθ and momentump = m sinhθ . These different
choices of excitations seem somehow related to the boundary conditions adopted by the
two formalisms along the space direction, i.e. in the LeClair–Mussardo approach one
considers a box of large volumeL, with periodic b.c., in the limitL → ∞, whereas in
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the Delfino approach one directly considers the infinitely extended line. Note, however,
that there is no dependence onL in the final expressions (2.13) and (3.5) and therefore
the role played by the boundary conditions in thermal effects and which of the two is the
appropriate one is nota priori clear.

• The form factors entering equation (2.13) are computed according to the prescription
given by equation (2.14) whereas those entering equation (3.5) are computed according
to the symmetric limit (3.4). The two different prescriptions for the finite part of the
form factors produce, of course, two different results. In the case of the trace of the
stress–energy tensor, for instance, there is already a difference for the two-particle form
factor entering the thermal sum: by using the symmetric limit, in fact we have

〈
θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2
〉 = 8πm2φ(θ1 − θ2) cosh2

θ1 − θ2

2
(4.1)

to be contrasted with equation (2.15), obtained by using the other prescription.

It is therefore evident that the two formulas, equations (2.13) and (3.5), proposed for the
one-point function at finite temperature, deeply differ their physical justifications and their
technical details. To judge which of the two is the correct one it seems necessary to reach
a better understanding of the physical principles ruling the thermal effects in quantum field
theories. Given the present ignorance about these principles, it is therefore difficult to decide
a priori in favour of one or the other of the two formulations and the best thing one can do is
to perform some checks. Those already done and discussed in the literature are unfortunately
inconclusive. Lukyanov [8], for instance, computed the thermal one-point functions of the
vertex operators in the Sinh–Gordon model by performing the path integral of the model and
he showed that these quantities coincide with the ones computed in the formalism by LeClair–
Mussardo. Unfortunately, the perturbative order at which he performed the computation does
not permit to decide about their general validity. On the other hand, Delfino [7] showed
that his formalism is able to reproduce the one-point function ofT

µ
µ up to the two-particle

contributions but unfortunately he did not prove the complete equivalence of his formula with
the TBA expression.

Given the present unsatisfactory status about the validity of the two formalisms it is highly
desirable to perform additional checks, in particular by comparing their predictions against a
quantity which can be determined by an independent method. These considerations naturally
select the one-point function of the trace of the stress–energy tensor as a check quantity for
the two formulas, since its expression (2.11) is independently determined by the TBA. Hence,
we have to see whether or not Delfino’s formula reproduces the TBA result, not only up
to the two-particle contribution, but also to higher orders (as shown above, the formula by
LeClair–Mussardo coincides with the formula of the TBA). We then have two possibilities:
(i) the formula proposed by Delfino is unable to reproduce the TBA result at higher orders;
(ii) the formula proposed by Delfino reproduces the TBA result, albiet it is just a different
organization of the terms entering both the thermal sum and the integral equations of the TBA.
In the first case, the failure of this check is already enough to decide about the general validity
of the thermal expressions proposed by Delfino. In the second case, there would still be open
the problem regarding which of the two formalisms is the correct one, since their coincidence
for the particular case of the stress–energy tensor is not expected to occur for other operators.
Luckily enough, it is the first possibility that happens. To show the discrepancy of Delfino’s
formula with the TBA, we compare the thermal expression of the stress–energy tensor of a
particular model which can be analytically solved.
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5. A simplified model

The main technical difficulty in comparing Delfino’s expression of
〈
T

µ
µ

〉
R

with the analogous
expression coming from the TBA lies in solving the integral equation (2.5). We can simplify
this step by taking a local kernel, i.e. we consider an integrable model for which

φ(θ1 − θ2) = 2πδ(θ1 − θ2). (5.1)

For the associateS-matrix we have

S(θ) =
{

1 if θ �= 0
−1 if θ = 0

(5.2)

i.e., if we parametrize theS-matrix asS(θ) ≡ −eiσ (θ), for the phase shift we have

σ(θ) =



π if θ > 0
0 if θ = 0

−π if θ < 0.
(5.3)

The legitimacy of the aboveS-matrix is discussed in the appendix and it is based on the
observation that the integrable model defined in this way may be regarded as the limitg → 0
of the Sinh–Gordon model. In fact, with the notation of reference [9], theS-matrix of the
Sinh–Gordon model is given by

SSh(θ) = sinhθ − i sin πB(g)
2

sinhθ + i sin πB(g)
2

(5.4)

with B(g) = 2g2/8π + g2 andg the coupling constant of the model (see equation (A.5)). It
is convenient to defineB(g) ≡ 2α. For the corresponding kernel we have

φSh(θ) = 2 sinπα coshθ

sinh2 θ + sin2 πα
(5.5)

and in the limitα → 0 we have

lim
α→0

φSh(θ) = 2πδ(θ). (5.6)

By using the kernel (5.1), the integral equation (2.5) becomes

ε(θ) = mR coshθ − ln
(
1 + e−ε(θ)

)
(5.7)

whose solution is given by

ε(θ) = ln(emR coshθ − 1). (5.8)

Hence

f (θ) e−ε(θ) = e−ε

1 + e−ε
= e−mR coshθ (5.9)

and inserting into the TBA formula (2.11), we have〈
T µ
µ

〉
R

− (
T µ
µ

)
0

= 2πm2
∫ +∞

−∞
dθ

2π
[e−mR coshθ + e−2mR coshθ + e−3mR coshθ + · · ·]. (5.10)

For the purpose of comparing with Delfino’s prediction, it is convenient to explicitly leave the
n-particle contributions to the thermal average, although it is evident that the above series can
summed to 〈

T µ
µ

〉
R

− (
T µ
µ

)
0

= 2πm2
∫ +∞

−∞
dθ

2π

1

emR coshθ − 1
(5.11)



On the finite temperature formalism in integrable quantum field theories 7405

which is nothing else but the thermal one-point function ofT
µ
µ for a free bosonic theory (see

the appendix for further details on this issue).
Let us now consider the form factors ofT µ

µ associated with the simplified model with
kernel (5.1). In virtue of the observed equivalence of this theory with a particular limit of
the Sinh–Gordon model, the form factors can be obtained by a carefulg → 0 limit of the
corresponding quantities of the Sinh–Gordon model. They were computed in [9] and can be
expressed as

〈
0
∣∣T µ

µ (0)
∣∣ θ1, . . . , θn

〉 = 2πm2

Fmin(iπ)

(
4 sinπα

Fmin(iπ)

)n−1

Qn(x1, . . . , xn)
∏
i<j

Fmin(θij )

xi + xj
. (5.12)

A few words on the above expression: the explicit form ofFmin(θ) can be found in [9]. For
our purposes we only need the functional equation satisfied byFmin(θ)

Fmin(θ)Fmin(θ + iπ) = sinhθ

sinhθ + i sinπα
. (5.13)

Qn is a symmetric polynomial in the variablesxi ≡ eθi given by

Qn(x1, . . . , xn) = detMij

with the(n − 1) × (n − 1) matrixMij given by

Mij = σ2i−j [i − j + 1].

In the above equation the symbol [n] is defined by

[n] ≡ sin(nα)

sinα
andσk is the elementary symmetric polynomial given by the generating function

n∏
i=1

(x + xi) =
n∑

k=0

xn−kσk(x1, x2, . . . , xn).

In the limit α → 0, the first polynomialsQn are given by

Q2 = σ1 Q4 = σ1σ2σ3 Q6 = σ1σ5 [σ2σ3σ4 + 3σ3σ6 − 4(σ1σ2σ6 + σ4σ5)] . (5.14)

5.1. Two-particle contribution

By using equation (5.12), let us compute〈
θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2
〉 = lim

η1→0
lim
η2→0

〈
0
∣∣T µ

µ

∣∣ θ1 + iπ + η1, θ2 + iπ + η2, θ1, θ2
〉
. (5.15)

We will consider the contributions coming from the different terms in (5.12) separately.
By using the functional equation (5.13), for the product ofFmin(θij ) we have, in the above

limit, ∏
i<j

Fmin(θij ) −→ [Fmin(iπ)]2 sinh2 θ12

sinh2 θ12 + sin2 πα
. (5.16)

For the polynomial of the denominator we have∏
i<j

(xi + xj ) −→ A1A2x1x2(x1 + x2)
2(x1 − x2)

2 (5.17)

whereAk = (1 − eiηk ) ∼ −iηk. Finally, for the polynomialQ4 in the numerator we obtain

Q4 −→ x1x2

(
x2

1 + x2
2

) [(
A2

1 + A2
2

)
x1x2 + A1A2

(
x2

1 + x2
2

)]
. (5.18)
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We now have two possibilities. The first consists of keeping in the above expression only the
term multiplying the combinationA1A2 (and disregarding those multiplying(A2

1 +A2
2)). This

leads to the computation of the connected form factor. In this case, combining all terms and
taking the limit (5.15), we have〈

θ2, θ1
∣∣T µ

µ

∣∣ θ1, θ2
〉
conn

= 4πm2
(

2 sinπα coshθ12

sinh2 θ12 + sin2 πα

)
coshθ12. (5.19)

Now by taking the limitα → 0 and using equation (5.6), we have〈
θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2
〉
conn

= 4πm2φ(θ1 − θ2) coshθ12 (5.20)

in agreement with equation (2.15).
The second possibility consists of taking the symmetric limit considered by Delfino. This

is obtained by takingA1 = A2. In this case, the symmetric limit of equation (5.15) produces〈
θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2
〉
sym

= 8πm2
(

2 sinπα coshθ12

sinh2 θ12 + sin2 πα

)
cosh2

θ12

2
. (5.21)

Now by taking the limitα → 0 and using equation (5.6), we have〈
θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2
〉
sym

= 8πm2φ(θ1 − θ2) cosh2
θ12

2
. (5.22)

Let us consider the expression (3.5) up to the the two-particle contribution. For the function
g(θ,R) we have

g(θ,R) = 1

1 − S(0)e−mR coshθ = 1

1 + e−mR coshθ (5.23)

and then〈
T µ
µ

〉
R

− (
T µ
µ

)
0

= 2πm2
∫ +∞

−∞
dθ

2π

[
e−mR coshθ

1 + e−mR coshθ + 2
e−2mR coshθ

(1 + e−mR coshθ )2
+ · · ·

]
. (5.24)

Expanding this expression in power of e−mR coshθ up to e−2mR coshθ we have〈
T µ
µ

〉
R

− (
T µ
µ

)
0

= 2πm2
∫ +∞

−∞
dθ

2π
[e−mR coshθ + e−2mR coshθ + O(e−3mR coshθ )]. (5.25)

Now comparing this expression with equation (5.9), we explicitly confirm the agreement found
at this order by Delfino in his paper.

5.2. Three-particle contribution

By using equation (5.12), let us compute〈
θ3, θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2, θ2
〉 = lim

η1→0
lim
η2→0

lim
η3→0

〈
0
∣∣T µ

µ

∣∣ θ1 + iπ

+η1, θ2 + iπ + η2, θ3 + iπ + η3, θ1, θ2, θ3
〉
. (5.26)

As before, let us consider the contributions coming from different terms separately. By using
the functional equation (5.13), for the product ofFmin(θij ) we have, in the above limit,

∏
i<j

Fmin(θij ) −→ [Fmin(iπ)]3

(
sinh2 θ12

sinh2 θ12 + sin2 πα

)

×
(

sinh2 θ13

sinh2 θ13 + sin2 πα

)(
sinh2 θ23

sinh2 θ23 + sin2 πα

)
. (5.27)
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For the polynomial of the denominator we have∏
i<j

(xi + xj ) −→ A1A2A3x1x2x3

[(
x2

1 − x2
2

) (
x2

1 − x2
3

)(
x2

2 − x2
3

)]2

= 64A1A2A3(x1x2x3)
5(sinhθ12 sinhθ13sinhθ23)

2. (5.28)

For the polynomialQ6, we have two possibilities. The first consists of keeping only the term

multiplying the combinationA1A2A3 (and disregarding all other expressions which multiply
the other monomials likeA3

1, A
2
1A2, etc). This leads to the computation of the connected form

factor. In this case we have

Qconn
6 −→ A1A2A3x1x2x3

(
x2

1 + x2
2

) (
x2

1 + x2
3

) (
x2

2 + x2
3

)[
(x1x2)

2
(
x2

1 + x2
2 − 2x2

3

)
+ (x1x3)

2
(
x2

1 + x2
3 − 2x2

2

)
+ (x2x3)

2
(
x2

2 + x2
3 − 2x2

1

)]
(5.29)

and for the connected form factor, combining all terms, we obtain

〈
θ3, θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2, θ2
〉
conn

= 2πm2
(

2 sinπα coshθ12

sinh2 θ12 + sin2 πα

)(
2 sinπα coshθ23

sinh2 θ23 + sin2 πα

)

× sinh2 θ13

sinh2 θ13 + sin2 πα
coshθ13 + permutations. (5.30)

By taking the limitα → 0, we obtain the result reported in formula (2.16).

The second possibility consists of considering the symmetric limit, which is obtained by
takingA ≡ A1 = A2 = A3. Other terms enter the polynomial in this case and we have

Qsym
6 −→ A3x1x2x3(x1 + x2 + x3)(x1 + x2)(x1 + x3)(x2 + x3)(x1x2 + x1x3 + x2x3)

×
[
(x1x2)

2
(
x2

1 + x2
2 − 2x2

3

)
+ (x1x3)

2
(
x2

1 + x2
3 − 2x2

2

)
+ (x2x3)

2
(
x2

2 + x2
3 − 2x2

1

)
− 2x1x2x3

[
x2(x1 − x3)

2 + x1(x2 − x3)
2 + x3(x1 − x2)

2
]]

. (5.31)

Therefore, combining all the different contributions, in the symmetric limit we have

〈
θ3, θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2, θ3
〉
symm

= 2πm2
(

2 sinπα coshθ12

sinh2 θ12 + sin2 πα

)(
2 sinπα coshθ13

sinh2 θ13 + sin2 πα

)

× sinh2 θ23

sinh2 θ23 + sin2 πα
[2(coshθ12 + coshθ13 + coshθ23) + 3]

×coshθ12
2 coshθ13

2

coshθ12coshθ13

(
2 cosh2 θ23

2 − 1
)

coshθ23
2

+ permutations.

By taking now the limitα → 0 and using equation (5.6), we obtain

〈
θ3, θ2, θ1

∣∣T µ
µ

∣∣ θ1, θ2, θ2
〉
sym

= 2πm2φ(θ1 − θ2)φ(θ1 − θ3)
coshθ12

2 coshθ13
2

coshθ12 coshθ13

×[2(coshθ12 + coshθ13 + coshθ23) + 3]

(
2 cosh2 θ23

2 − 1
)

coshθ23
2

+ permutations. (5.32)
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Once inserted into equation (3.5), we have

〈
T µ
µ

〉
R

− (
T µ
µ

)
0

= 2πm2
∫ +∞

−∞
dθ

2π

[
e−mR coshθ

1 + e−mR coshθ

+ 2
e−2mR coshθ

(1 + e−mR coshθ )2
+

9

2

e−3mR coshθ

(1 + e−mR coshθ )3
+ · · ·

]
(5.33)

and by making an expansion up to e−3mR coshθ we have〈
T µ
µ

〉
R

−(T µ
µ

)
0

= 2πm2
∫ +∞

−∞
dθ

2π

[
e−mR coshθ + e−2mR coshθ +

3

2
e−3mR coshθ + O(e−4mR)

]
(5.34)

i.e. the third order coefficient disagrees with the corresponding coefficient of equation (5.10).

6. Conclusions

In this paper we have critically analysed the status of the thermal formalism for two-
dimensional integrable field theory by comparing the approach proposed by LeClair and
Mussardo with the approach proposed by Delfino. Whereas the first approach is able to
reproduce the one-point function ofT

µ
µ as given by the TBA, the second one is in agreement

with the TBA formula only up to the two-particle contribution and differs otherwise. This has
been explicitly shown by considering a simple integrable model, where all calculations can be
performed analytically without relying on the solution of integral equation. It would be useful
to further explore the subject and see whether or not the approach by LeClair and Mussardo
passes other tests.
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Appendix A.

Consider the exactS-matrix of the Sinh–Gordon model

SSh(θ) = sinhθ − i sinπα

sinhθ + i sinπα
(A.1)

and study the above function in the limitα → 0. By choosingα = 1/n, define the sequence
of functions

Sn(θ) = sinhθ − i sin π
n

sinhθ + i sin π
n

. (A.2)

These functions satisfy the following conditions for any value ofn

Sn(iπ − θ) = Sn(θ) Sn(0) = −1. (A.3)

The first condition expresses the crossing invariance of these functions and the second the fact
that any element of the sequence corresponds to a fermionicS-matrix. The above functions
can be equivalently expressed in terms of an integral representation as

Sn(θ) = − exp

[
2i
∫ ∞

0

dt

t

cosht
2

(
1 − 2

n

)
cosht

2

sin
θt

π

]
≡ − exp[iσn(θ)]. (A.4)

Subtleties arise in the limitn → ∞. In fact, the naive way of taking the limit produces
S = 1, a result which of course matches the physical intuition that the limitg → 0 of the
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Sinh–Gordon lagrangian

L = 1

2
(∂µϕ)

2 − m2

g2 (coshgϕ − 1) (A.5)

is the bosonic free-field theory. However, the proper way of taking the limit produces the
discontinous phase shift

σ(θ) = lim
n→∞ σn(θ) =




π if θ > 0
0 if θ = 0

−π if θ < 0
(A.6)

as seen by equation (A.4). Equivalently, one can consider the limit of the logarithmic
derivatives

φn(θ) = −i
1

Sn

dSn(θ)

dθ
= 2 sinπ

n
coshθ

sinh2 θ + sin2 π
n

i.e.

lim
n→n

φn(θ) = 2πδ(θ) (A.7)

and then integrate the above expression to obtain the phase shift. The limitn → ∞ in equation
(A.2) defines anS-matrixS(θ), which for real values ofθ is given by

S(θ) = lim
n→∞ Sn(θ) =

{
1 if θ �= 0

−1 if θ = 0
(A.8)

By virtue of the first equation in (A.3), the above function satisfies the equationS(θ) =
S(iπ − θ) and one can use this relation to extend it along the imaginary axis. AlthoughS(θ)

is a crossing symmetric function and a fermionic-typeS-matrix, it is obviously discontinous
and different from the naive limitS = 1. There is, however, no contradiction between the
two results because all physical observables computed by using the two differentS-matrices
perfectly coincide. For instance, in order to compute the free energy of the theory, by using
S = 1, one adopts the (free) TBA relative to abosonic-type S-matrix, with the result

F(R) = R

π

∫ ∞

0
dθ coshθ ln(1 − e−mR coshθ ). (A.9)

Conversely, by using the singular fermionic–typeS matrix, with kernel (A.7), one arrives at
the result

F(R) = −R

π

∫ ∞

0
dθ coshθ ln(1 + e−ε) (A.10)

whereε(θ) = ln(emR coshθ − 1) is the solution of the fermionic TBA equation (2.5). It is easy
to see that, by inserting the expressionε(θ)in (A.10), the above two expressions of the free
energy are equal. The same matching is also obtained by considering the calculation of any
correlation function. In fact, for the free theory (the one withS = 1), this calculation can
be done by using the Wick theorem. Obversely, for the theory defined through the singular
fermionic-typeS-matrixS(θ), one should employ the form factors〈0|O(0)|θ1, . . . , θn〉 of the
Sinh–Gordon theory, provided in reference [9], in the limitα → 0. These form factors, for
real values ofθ , however go uniformly to the corresponding form factors of the free theory.

In conclusion, the above arguments can be summarized by saying that the free bosonic
theory can be equivalently seen as the consistent limit of interacting theories with a crossing
symmetric fermionic-typeS-matrix1. Moreover, even though theS-matrix obtained in the
1 In order to appreciate this point, note that the vice versa is not true: free fermionic theory cannot be regarded
as consistent limit of interacting bosonic-typeS-matrix; see reference [10] for the problems presented by bosonic
S-matrices.
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limit is a singular function (so that one needs to generalize the usual principles of analiticity of
theS-matrix theory), all observables determined by it precisely coincide with those obtained
by using directly the free-theory formulation.
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